On Improvements of Kantorovich Type Inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kantorovich type inequalities for ordered linear spaces

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...

متن کامل

Improvements of Young inequality using the Kantorovich constant

‎Some improvements of Young inequality and its reverse for positive‎ ‎numbers with Kantorovich constant $K(t‎, ‎2)=frac{(1+t)^2}{4t}$‎ ‎are given‎. ‎Using these inequalities some operator inequalities and‎ ‎Hilbert-Schmidt norm versions for matrices are proved‎. ‎In‎ ‎particular‎, ‎it is shown that if $a‎, ‎b$ are positive numbers and‎ ‎$0 leqslant nu leqslant 1,$ then for all integers $ kgeqsl...

متن کامل

Ela Kantorovich Type Inequalities for Ordered Linear Spaces∗

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...

متن کامل

On Generalization of Cebysev Type Inequalities

In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7030259